## NOTES

## Temperature-Dependence of the Diffusion Constants of Rigid, Closed-Cell Foams

It has been shown<sup>1</sup> that the diffusion of gases in rigid, closed-cell foams obey Fick's Law and that the diffusion coefficient  $D_f$  can be predicted from the following expression

$$D_{\rm f} = (3RT/M)(\rho_0/\rho)P_{\rm e} \tag{1}$$

where  $D_{\rm f}$  is the diffusion coefficient of the foam,  $P_{\rm e}$  is the permeation constant of the solid polymer-gas system,  $\rho_0$  is the density of the solid polymer,  $\rho$  is the density of the foam, T is the absolute temperature, M is the molecular weight of the diffusing gas, and R is the gas constant. The validity of this equation was confirmed at room temperature from experimentally measured values of  $D_{\rm f}$  as a function of  $\rho$ .

By using eq. (1), it should also be possible to evaluate  $D_t$  at any temperature from the knowledge of the temperature dependence of  $P_{e}$ , which is known<sup>2</sup> to obey an Arrhenius relation

$$P_{\rm e} = P_{\rm e0} \exp\{-\Delta H_{\rm p}/RT\}$$
<sup>(2)</sup>

where  $\Delta H_p$  is the activation energy of permeation. Substituting eq. (2) into eq. (1) and rearranging results in

$$\ln(D_f/T) = -(\Delta H_p/RT) + \ln(3R\rho_0 P_{e0}/M\rho)$$
(3)

Inasmuch as the ratio  $\rho_0/\rho$  is temperature-independent, the last term is a constant, and hence a straight-line relationship between  $\ln D_t/T$  and 1/T is predicted.

In Table I are given values of  $D_t$  obtained at four temperatures for a rigid, closed-cell (>95%) polyurethane foam of density 4.5 lb/ft<sup>3</sup> (Emerson and Cuming, Incorporated, Eccofoam FPH/12/6H). The experimental details have been reported previously.<sup>1</sup> The data which are plotted in Figure 1 as  $\ln D_t/T$  versus 1/T show a reasonably good straight line relationship. The slope yields for  $\Delta H_p$  a value of 7.4 kcal/mole. This value is in excellent agreement with the usual 6-12 kcal/mole range for the activation energies for diffusion processes in polymers.<sup>2</sup>

For the particular case of the permeation of  $CO_2$  through a rigid polyurethane, no data were found in the literature. However, some data<sup>3</sup> were found for a rubbery polyurethane, and these are given in Table II. The activation energy for permeation  $\Delta H_p$ was found to be 9.4 kcal/mole, and this compares favorably with the value of 7.4 kcal/ mole. Further, it is expected that  $\Delta H_p$  for the rigid polyurethane should be lower than that for the rubbery polyurethane, since it has been adequately verified<sup>2</sup> that the activation energy of a polymer above its  $T_q$  is higher than that value obtained when the polymer is below its  $T_q$ . Hence the 9.4 kcal/mole corresponds to a polyurethane above  $T_q$ , whereas the 7.4 kcal/mole is for a polyurethane below  $T_g$ .

| Temperature,<br>°C | $D 	imes 10^{6}$ , cm²/sec | $D/T 	imes 10^9$ , cm²/sec °K | 1/T, °K $	imes$ 10 <sup>3</sup> |
|--------------------|----------------------------|-------------------------------|---------------------------------|
| 22                 | 1.76                       | 5.96                          | 3.39                            |
| 41                 | 3.34                       | 10.6                          | 3.18                            |
| 61                 | 9.57                       | 28.6                          | 2,99                            |
| 81                 | 13.7                       | 38.7                          | 2.82                            |

TABLE I Diffusion Constants of a Polyurathana Form at Various Temperatures



Fig. 1. Temperature dependence of the diffusion coefficient for a CO<sub>2</sub>-filled rigid polyurethane foam, density 4.5 lb/ft<sup>3</sup>.

TABLE II Results for CO<sub>2</sub> Permeation Through a Rubbery Polyurethane<sup>a,b</sup>

| Temperature,<br>°C | $P_{ m e} 	imes 10^{ m 9}$ ,<br>cm <sup>3</sup> STP-mm/<br>cm <sup>2</sup> -sec-cmHg | $D	imes 10^6,$ cm <sup>2</sup> /sec | Solubility,<br>cm³ STP/cm³-atm |
|--------------------|--------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|
| 25                 | 1.85                                                                                 | 0.094                               | 1.50                           |
| 50                 | 6.34                                                                                 | 0.440                               | 1.10                           |

<sup>a</sup> Data for Vulcaprene polyurethane rubber.<sup>3</sup>

<sup>b</sup> Activation energies:  $\Delta H_p = 9.4$  kcal/mole (for permeation);  $\Delta H_d = 11.7$  kcal/mole (for diffusion);  $\Delta H_8 = -2.3$  kcal/mole (for solubility).

This paper represents one phase of research performed by the Jet Propulsion Laboratory, California Institute of Technology sponsored by the National Aeronautics and Space Administration, Contract NAS7-100.

## References

1. E. F. Cuddihy and J. Moacanin, J. Cellular Plastics, 3, No. 2, 73 (1967).

2. C. E. Rogers, in Engineering Design for Plastics, Reinhold, New York, 1964, Chap. 9.

3. G. J. Van Amerongen, J. Polym. Sci., 5, 307 (1950).

E. F. CUDDIHY J. MOACANIN

Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91103

Received June 17, 1968

252